

Tangent Line to a Hyperellipse Coated With Layer

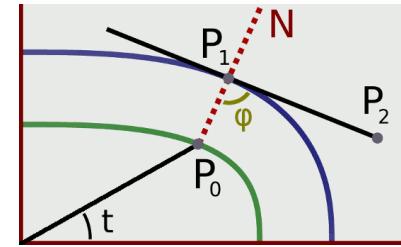
Parametric equation of $\frac{1}{4}$ hyperellipse coated with layer of thickness r_1 , equation of normal vector:

$$\begin{aligned}\vec{N} &= (N_x, N_y) = \left(\frac{\cos^{n-1} t}{a^n}, \frac{\sin^{n-1} t}{b^n} \right), \\ x &= \cos(t) \left(\frac{\cos^n t + \sin^n t}{a^n + b^n} \right)^{-1/n} + r_1 N_x \left(\frac{\cos^{2n-2} t + \sin^{2n-2} t}{a^{2n} + b^{2n}} \right)^{-1/2}, \\ y &= \sin(t) \left(\frac{\cos^n t + \sin^n t}{a^n + b^n} \right)^{-1/n} + r_1 N_y \left(\frac{\cos^{2n-2} t + \sin^{2n-2} t}{a^{2n} + b^{2n}} \right)^{-1/2}, \quad n \geq 2, \quad t \in [0, \pi/2].\end{aligned}\quad (1)$$

Find tangent line passing through point P_2 .

Vector difference $\vec{P}_1 - \vec{P}_2$ must be perpendicular to \vec{N} which is a normal vector at point P_0 . For that, cosine of the angle between vectors (equals to dot product of vectors of length 1) must be zero:

$$\cos \varphi = \frac{(\vec{P}_1 - \vec{P}_2) \cdot \vec{N}}{\|\vec{P}_1 - \vec{P}_2\| \cdot \|\vec{N}\|} = \frac{(P_{1x} - P_{2x}) N_x + (P_{1y} - P_{2y}) N_y}{\sqrt{N_x^2 + N_y^2} \sqrt{(P_{1x} - P_{2x})^2 + (P_{1y} - P_{2y})^2}} = 0. \quad (2)$$

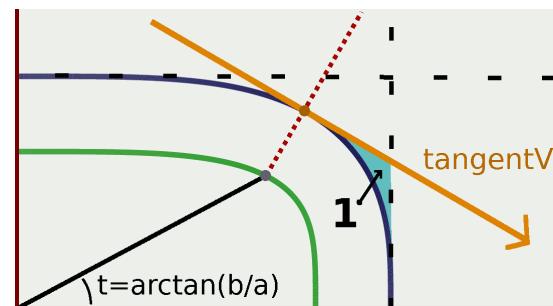


Cancellation out $\|\vec{P}_1 - \vec{P}_2\| \cdot \|\vec{N}\|$ is not performed, to allow root-finding algorithm use absolute error bound expressed in $\cos \varphi$. Plugged are \vec{N}, x, y from equations (1):

$$\cos \varphi = \left(r_1 + \left(\frac{\cos^{2n-2} t + \sin^{2n-2} t}{a^{2n} + b^{2n}} \right)^{-1/2} \left(\frac{\cos^n t + \sin^n t}{a^n + b^n} \right)^{-1/n+1} - P_{2x} \frac{\cos^{n-1} t}{a^n} - P_{2y} \frac{\sin^{n-1} t}{b^n} \right) / \sqrt{(x - P_{2x})^2 + (y - P_{2y})^2}. \quad (3)$$

Function properties

- If P_2 is inside the closed curve then tangent lines do not exist. In other cases 2 tangent lines exist: to the left and to the right of the ray from the origin through P_2 .
- If required P_2 is translated such that P_1 appears in the quadrant where $P_{1x} \geq 0, P_{1y} \geq 0$. After the computation P_1 is translated back accordingly.
- tangentV is tangent vector at the “corner” of a hyperellipse directed towards X+. It is determined if P_2 is to the left or to the right of tangentV and subsequently it is determined the interval where P_1 is located: $t \in [0, \arctan(b/a)] \cup t \in [\arctan(b/a), \pi/2]$.
- If P_2 is to the right of tangentV ($\vec{P}_2 \cdot \text{tangentV} \geq 0$) and inside bounding box ($P_{2x} \leq a + r_1 \wedge P_{2y} \leq b + r_1$) then two cases possible: P_2 is inside the hyperellipse or 2 tangent lines exist on the interval determined above. Then algorithm for finding point on a hyperellipse closest to P_2 is executed. If P_2 is not inside then closest point parameter is used to divide interval.
- Function is continuously differentiable on the interval $t \in [0, \pi/2]$. Derivative value is computed along with function value using automated software process.



Filled-in, designated number **1** is the area such that if P_2 is inside the area then 2 tangent lines exist on the interval $[0, \arctan(b/a)]$.

Applied is Newton-Raphson method combined with bisection as described in “Distance Hyperellipse to Point”. Initial guess t_0 is set proportional to distance P_2 to tangentV and distance P_2 to axis X or axis Y.

It was measured average number of evaluations of function (3) and its derivative to reach absolute error below 10^{-12} . It depends on hyperellipse parameters n, a, b, r_1 and distance to the point. The result is 4.2 to 9.7 evaluations.