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Distance Hyperellipse to Point

Hyperellipse is a curve defined by the equation:
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= 1 , n⩾2 . (1)

Hyperelliptic cylinders of length 1, a=0.15, b=0.3. Left to right: n=2.1, 2.8, 5, 30.

Parametric equation of ¼ curve (x , y⩾ 0):
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After taking partial derivatives from (1), plugging x , y from (2), then simplification it results in vector-valued 
parametric equation of normal vector to the curve:
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“Corner” on the interval t∈[0 ,π /2 ] is the point (a⋅2−1/n , b⋅2−1 /n) where t=arctan(b /a), N⃗=(1/a , 1/b) .

Find the point P0 on hyperellipse closest to given point P1.

Using formula – distance d from point P1 to the line defined by point P0  on the line 
and direction vector N:
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Plugging x , y from equation (2), N from equation (3), after simplification it is 
obtained a formula for distance from P1 to the line:
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This is a transcendental function of one variable. Distance d is set equal to zero then a root-finding algorithm is 
applied.
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Function properties

• Signs of components of P1 are equal to signs of corresponding components of Р0. Parametrization (2) is 
defined only on interval t∈[0 ,π /2] where P1 x⩾0 , P1 y⩾0 . Before computation, P1 is moved to the 
quadrant where equation (2) is defined, and after P0 is found its components are assigned original signs 
from P1.

• The function is continuous. At the endpoints of the interval [0 ,π /2] function values take different signs, 
thus function has root for every P1 x>0 , P1 y>0 .

• If P1 is located inside the hyperellipse then it is possible for function (5) to have more than 1 root. On 
one of the intervals t∈[0 ,arctan (b /a)] ∨ t∈[arctan(b /a ),π /2] it exists exactly 1 root and it corresponds 
to minimal distance between P1 and P0. Proof is given in appendix [].

• The function is continuously differentiable on the interval t∈[0 ,π /2 ]. Derivative:
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Application of root-finding algorithm

Utilized is Newton-Raphson method combined with bisection. It always returns the result if it is given an 
interval such that interval contains root and function values take different signs at interval endpoints. If on some 
Newton-Raphson iteration i any of the following conditions arise:

• Derivative equals zero;
• Next approximation xi appears outside of the defined interval;
• Non-convergency or divergency |f ( xi)|⩾|f ( xi−1)| occurs;

then bisection iteration is performed. For that it performs 0 – 2 additional function evaluations to determine signs 
at interval endpoints.

Root-finding algorithm requires initial guess t0  and bounding interval. First it computes dC – signed distance P1 
to the line defined by the “corner” point and normal vector in “corner” point. Then t0  and bounding interval are 
found using the following formula:

{t0 = P1 y⋅arctan(b /a)/(P1 y +|dC|), t∈[0 , arctan(b /a)] if P1 is to the right of the line,
t0 = arctan(b /a ) + (π /2−arctan(b /a ))⋅|dC|/(P1 x +|dC|), t∈[arctan (b /a),π/2 ] if other case .

Termination criterion for root-finding algorithm

Algorithm terminates when it reaches given absolute error bound ε ⩾|f (xi )|. For formula (5) the meaning of that 
number is distance d. If distance P1 to hyperellipse is large enough then given ε  may be unreachable because of 
limited precision. Also for the application it would be more adequate if absolute error bound is expressed in 
angle t . To address the above issues, if distance P1 to P0 is greater than 1 then computed function value and 
derivative are divided by the distance P1 to P0.

Measurements
It was measured average number of function calls fnCalls required to reach absolute error ε=10-12 or below. 
Pseudorandom number generator was used. In every measurement 103 random hyperellipses were formed and 
for each one distance to 103 random points was computed.

Parameters fnCalls
n=2..4, a,b=1..2, |P1x|, |P1y| < 3 4.35
n=2..4, a,b=1..2, |P1x|, |P1y| < 108 5.39
n=2..4, a=1, b=15..20, |P1x| < 2, |P1y| < 2b 7.07

n=2..4, a=1, b=15..20, |P1x|, |P1y| < 108 7.18
n=10, a,b=1..2, |P1x|, |P1y| < 3 5.49
n=10, a=1, b=15..20, |P1x| < 2, |P1y| < 2b 7.97
n=50, a,b=1..2, |P1x|, |P1y| < 3 6.17
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