Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 1 of 13

Collision Detection Between Two Moving Convex Objects
In 2D (task overview)

Foreword. Collision detection between two moving objects in 3D is a task arising in areas such as
robot motion planning, physics simulation and other. We approach the task by first considering similar tasks in
2D which appear less complex because of lower dimensionality and less variables.

Our result: it was developed an algorithm for collision detection between two moving convex objects in 2D,
including a case where one of the objects is not strictly convex.

It is going to be useful in the future work in three-dimensional setting.

Algorithm usage. In an application where objects move, it first performs computationally inexpensive
tests such as bounding circles overlap. If such test does not exclude possible overlap then our collision detection
algorithm runs.

Definition of convex object.

Strictly convex ellipse (left) and non-strictly
convex regular N-gon with rounded corners.

Methods for defining shapes in two dimensions

We define shapes using parametric equations. It allows to express a set of points (a perimeter of the shape) as a
set of values of univariate functions.

An ellipse with %4 horizontal axis length a and % vertical axis b is given by following equations:

X = a cos g,
y = bsing, —a<es<surx.

(1)
In most cases, parameter ¢ is not equal to an angle between axis X positive direction (X+) and a ray from origin
through a point at the perimeter.

Also it requires outward unit normal vector at the point:

2 . 2

cos" @ sin“g@

/\/ ¢, e 2
a b

cos@ sing

N = ,
a b

We also use piecewise functions. An example is given in Appendix A. Example Of A Shape Defined By
Piecewise Function.

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 2 of 13

Methods for positioning objects in two dimensions

We define a center of object C (a point), and rotation angle
angle.

It exists a way to define rotation using 2x2 matrix. It may
reduce amount of computation as it computes cosine and sine
only once.

Rotation of a point.

Left: an ellipse a=1, b=2.

To rotate a point (X, y) by angle 0 about the origin the Right: same ellipse translated by C=(1, 2)
following formula is used: and rotated by ang1e=0.5.

X = Xxcosf — ysind 3)

y = ycosf + xsind

We refer to the 1% object as to objectl, 2™ object as to object2.

Coordinate transformation such that object2 is positioned at the origin and is not rotated
(object2 local coordinate space)

s s ., &
LN (S %o, . "
, . ‘e , .
oy . », °, n
. ., e,

e i o 3 u
Taun? ~,. \ .
e, . H

ey, .

Tanu?

4
o
4
*
&
g
o
.0
+
.’
*
4
o
4
4
o
4
j*

- .
o .
. .
R LT TP o PP L L

o
N
e

Left: objectd, solid line, is an ellipse a,=0.5, b1=0.8, C;=(-1.5, 0), angle;=0.3
and object2, dotted line (an ellipse a,=0.5, b,=2), C,=(1, 0.5), angle,=1.

Center: coordinate translation by C;-C,, so object2 is at the origin.

Right: rotation by -1 radian, so object2 is not rotated.

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 3 of 13

Distance Between Two Stationary Objects

First we consider distance between two stationary objects. Same function arises
between two moving objects in any fixed time t. 7
,
¢/~
The least distance between two curves is the distance between 2 points on curves 7 7
such that a line segment between 2 points is perpendicular to a curve at the point. 5 i e
At that points, distance derivative is zero. 7 4
’ Vi
R¢
: : : . : ,
We implemented following approach. Given parameter ¢ get point at the perimeter B
/7

of object1 and unit normal vector at the point. Then using negated unit normal
vector find a point at the perimeter of object2. Then compute distance between

two points.

Find point at the perimeter given negated unit normal vector.

It was derived a formula for an ellipse:

(x,y) = (=a’N,, =b’N,) / Va’ N, + b'N,, . (4)

For non-strictly convex shapes there exist many points where a unit normal at the point equals to given unit
vector. Because of that, our approach is valid only when object2 is strictly convex.

Compute distances given ¢
1. Given ¢ find point P; at the perimeter of object1 and unit normal N at the point;
2. Create coordinate system where object2 is at the origin and is not rotated (0bject2 local space);
3. Transform P; and N into object2 local space;
4. Using -N find point P, at the perimeter of object2;
5. Compute distance between two points P; and P..

When computing distances it also computes 1* and 2™ derivatives with respect to ¢.

Three different distances are shown in the image to the right:
e “Usual” distance between two points along straight line on P F -N
Euclidean plane — function distanceEuclidean(o) l ‘3/\}}(
e “Forward” distance from point P; along vector N — function 9. %o
distanceFwd (o) G | " %
* “Side” distance between the line formed by P; and N, and point § I 6@
P, — function distanceSide (o) g, Oé@
0n .
— . ?
Almost all amount of computations when computing these distances is o - ‘.
*\' “
the same. : ®
N distanceFwd | P1

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 4 of 13

Distance functions analysis

Two objects are shown in the image to the right. Their distance functions
depending on @ € [— 7, 7] are shown below. Values of distanceFwd (o)
are plotted negated for an ease of comparison. It requires to find either a
minimum of distanceEuclidean(¢), or a maximum of
distanceFwd(¢), or zero of distanceSide(¢).

0

* Functions have several local extrema. Global extremum is distinctive
by distanceFwd(¢) > 0.

* Function distanceFwd(¢) has substantially wider convergency
intervals if compared with distanceEuclidean(¢), meaning
intervals such that if numerical method starts at any point within an
interval then local extrema will be found.

* Itrequires to address issues about non-strictly convex objects. Please

see Appendix B. Example where one object is non-strictly convex.

.............................
........................
........

.......................
......

distanceEuclidean sessesersananans \
distanceFwd

distanceSide == s == s == s == == - ‘“
(incl. where distanceFwd>0) =————— "

We implemented finding global minimum of distanceEuclidean(¢). The algorithm is substantially based
on Newton’s method in optimization. If it finds local minimum where distanceFwd(¢) <0, (that is, not
possessing a property of global minimum discussed above), it continues to find other minima using bisection of
intervals which have width more than defined and where the search was not performed before.

To find initial value of ¢, it creates coordinates where object1 is at the origin and is not rotated, creates vector

N from the origin to the center of object2 (equally, N is a center of object2inobject1 local space).
Then, in case of an ellipse:

@ = atan2(a N,, b N,). (5)

Also see Appendix C. Ellipses having axes ratio 1:100 and above.

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 5of 13

Distance Between Two Moving Objects
In the algorithm we use functions which express distance dependent on ¢ and t: distanceFwd (g, t) and
distanceSide(o, t). To compute function values, it executes the following:

1. Compute positions objectl and object2 at time ¢
2. Perform computations listed in “Compute distances given @”;

Along function values it computes order 1 and 2 derivatives with respect to ¢ and t:

of af of
_|og| . 2, | 0 O@ot
ot otdg ot

We implemented the following algorithm:

1. Determine ¢ and distance between two objects when t=0;
2. Perform algorithm steps with increase of ¢, with correction of ¢ so
the parameter matches minimum distance.

c
0

Termination criteria:

1. Objects collide. Objects are determined as being in collision when
distance between them reaches some value (e.g. (1. .4) -1079.
It does not allow object intersection.

2. Distance increases enough to reach computationally inexpensive
criterion which excludes possibility for a collision. It could be
bounding circles no longer overlap.

--;-----i-.ll.‘!----l-..-
- >
R LT TR

Objects at t=0, t=1, t=2.

Function distanceSide(o,t).

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 6 of 13

Function distanceFwd(o,t).

Function distanceEuclidean (¢, t). Using this function is found to be less beneficial: on average its
intervals of convergence are more thin, numerical method takes more iterations.

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 7 of 13

One step of the algorithm

It is still in the stage of the development however key ingredients are already understood.

Algorithm proceeds along zero level of distanceSide(¢,t). In contrast with movement along extrema it
allows for 1 additional order of approximation.

In the neighborghood of a point ((po , to) the function is expressed as order 2 Taylor polynomial:

- T 1 T2
P = ;P_t% s f((ﬂ, t) = f(%,to) + P Vf(‘ﬁo: to) + 2_P \% f(%,ta)P- (7)
0
An equivalent notation without matrices or operators:
0 0
fo.0) = flanto) + 5E(p-) + Shie-0) +
8)
VO (v DL (ot s Ly ‘
5 8¢2(0) + 6¢6t(¢) ‘%)(t to) + 2 3¢ (t to)-

It results in order 2 algebraic curve. As the curve bends it may bend enough for a movement along the curve to
head in the direction opposite to the increase of t.

This is one of factors limiting
algorithm step length.

There is an approximation with a
straight line, for a comparison.

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 8 of 13

Backtracking

.ll

/1:- :. N\ O
E i object1l
E E object2
i
Y

1. Algorithm step appears in the point which does not satisfy criteria.

2. Backtracking performed.

3. An area where formally algorithm can move, it is not connected to the area where algorithm steps are
going. It corresponds to the movement of objectl (see image to the right) in case after it passes
through object2.

Correction ¢ to let it zero

After algorithm step is performed it is often the case where function value is not zero.

1. Algorithm step is performed. distanceSide(¢,t) ~ -0.2

A correction step using same t is performed. distanceSide (¢, t) =~ -0.0007

3. [Itrequires more correction. After one more correction step (not shown),
distanceSide(g,t) ~ -3 107", algorithm step is considered as completed.

N

For correction steps it reuses object positions. Also it does not require derivatives with respect to t.
Halley’s method is applied.

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 9 of 13

Appendix A. Example Of A Shape Defined By Piecewise
Function

Shape shapel (see image to the left) is determined by three
parameters I, I',, I'5. It has continuous perimeter and normal
vector. The domain of definition — 77 < @ < 7 consists of
several intervals:

e If |@| > /2 then it is a part of an ellipse and is given
by the same equations as an ellipse plugging a=rs,

b=ri+r,.
11712 =] arctan r2/nn

s If|p|<al2 V |@|=>arctan(r,/r,) thenitis a part

of a circumference with its center at the point (0, *r,)

and radius r;. A point at the perimeter is given by

equations:
d = r)sing| + \/rf—ricosz¢,
X = d cos @, ©) /
y = d sin ¢.

Normal vector at the point:

X () |}’| -, Shape shapel, its parameters are
poo S9N (10) 1=0.5, r,=1, r=0.8.

(NN, =

It requires unit vector (of length 1). It computes vector
length as length = \/ (N i + N ;) then divides vector components by its length.

 If |@| < arctan (r,/r,) then the part of the perimeter is vertical line segment. Point coordinates are

given by:

(x,y) = (ry, rytang). (11)
Unit normal vector on this interval is independent of ¢. It equals to:

N = (1,0). (12)
Because N is not dependent on ¢, derivatives of vector componets di¢ N X(@), %,v N y((p) are zero.

To summarize it, for subsequent computations in collision detection it requires:

* Point coordinates by ¢;
* Unit normal vector at the point by ¢;
* 1% and 2™ derivatives of the above quantities (totaling 4 scalars) with respect to ¢.

Derivatives are computed alongside function values using automatic differentiation.

On some intervals some derivatives are zero. Also at interval endpoints ¢ = *arctan (r,/r,), ¢ = =+ /2 some

derivatives are discontinuous, that is some of 4 functions are not continuously differentiable. Function values are
all continuous on entire domain of definition.

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 10 of 13

Check Using Computer Algebra System (CAS) “Wolfram Alpha”

Let r,=0.5, r,=1, r,=0.8. Then arctan(r,/r,)~ 1.10715. It seems like this CAS has no ability to plot
piecewise parametric function or to plot several parametric functions at once.

We performed several plots providing different intervals for t, while maintaining same ranges for x,y and same
aspect ratio x/y:

parametric plot x=0.8 cos t, y=1.5 sin t, {t,-3/2 pi,-pi/2}, plotrange ((-2,2), (-
2,2)), AspectRatio 1

parametric plot x=cos t(|sin t]|+sqrt(0.25-cos”r2 t)), y=sin t(]|sin t]|+sqrt(0.25-
cosn2 t)), {t,1.10715,pi/2}, plotrange ((-2,2),(-2,2)), AspectRatio 1

parametric plot x=cos t(|sin t]|+sqrt(0.25-cos”h2 t)), y=sin t(]|sin t]|+sqrt(0.25-
cosn2 t)), {t,-pi/2,-1.10715}, plotrange ((-2,2),(-2,2)), AspectRatio 1

parametric plot x=0.5, y=0.5 tan(t), {t,-1.10715,1.10715}, plotrange ((-2,2), (-
2,2)), AspectRatio 1

-2k -2k

Screenshots from several plots were combined using gimp: first arranged in several layers then removed
background from upper layers using Layer — Transparency — Color to Alpha.

The result (left image) is what was expected.

Right image: additional treatment with gimp.

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01.

Appendix B. Example where one (
object is non-strictly convex

pg. 11 of 13

A

: N
In the plot at t=0 (below) there are intervals where the 1 and the 2™ " _m
derivatives are zero. Newton’s method in optimization does not '_ (/
work on such intervals. : :
Also there are points of discontinuity of the 1* derivative. E‘ :'
"
-t
- S !
R l,
- \
\
!
distanceEuclidean --ssseseeaaaanns \
distanceFwd \
distanceSide ==« ==« m= o m— - - \
(incl. where distanceFwd>0)

distanceSide(o,t).

Right: fragment of 3D plot in the neighborhood of the

i

collision point. The point belongs to non-strictly convex interval of the perimeter of object2.

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01.

pg. 12 of 13

Appendix C. Ellipses having axes ratio 1:100 and above

To illustrate difficulties arising when finding closest distance between stationary
objects at t=0 we consider two ellipses having axes ratio 1:5 and 1:15 (image to

the right).

In the plot below, distanceEuclidean(¢) has 3 local minima. The
minimum at ¢ ~ 0 has large radius of convergence.

Global minimum has radius of convergence approximately 0.2 — 0.3.
If axes ratio increases to 1:100 then radius of convergence reduces to
approximately 0.01 and the corresponding peak in the plot has width

less than 1px.

e
.
.
e
e,

......
L

..............................

o ——
—
o —

.............
ea,
. ..

e,
..
L
e
.

. ——

T o —

distanceEuclidean
distanceFwd
distanceSide =

(incl. where distanceFwd>0)

Denis Burykin. Collision Detection Between Two Moving Convex Objects In 2D (task overview). Version 2025.01. pg. 13 of 13

Appendix D. Object Rotates at 30 radian/s

In applications there may be a requirement to handle substantially much faster rotation.

object1 is a regular heptagon with rounded corners. It rotates and also has slow linear motion
towards object2. It takes approximately half-round until the collision with object2 occurs.

Right: same plot near the origin scaled 20:1.

¢=-1

distanceSide(o,t).

	Collision Detection Between Two Moving Convex Objects In 2D (task overview)
	Distance Between Two Stationary Objects
	Compute distances given φ

	Distance Between Two Moving Objects
	One step of the algorithm

	Appendix А. Example Of A Shape Defined By Piecewise Function
	Appendix B. Example where one object is non-strictly convex
	Appendix С. Ellipses having axes ratio 1:100 and above
	Appendix D. Object Rotates at 30 radian/s

